FTSOv2: more data feeds and faster updates to the F'T'SO

Flare Network
Version 1.0

September 9, 2024

Abstract

The FTSO (Flare Time Series Oracle) is a native protocol of the Flare Network,
allowing data providers on the network to periodically determine consensus-driven time
series values for a collection of data feeds. Typically, these data feeds represent prices
of various assets, so that the FTSO provides access to decentralized price estimates for
various smart contracts operating on the network and beyond. This document presents the
design features of an improved version of the FTSO, referred to as FTSOv2, supporting
higher frequency updates and a larger range of data feeds. These improvements are
driven by optimizations to the core Commit-Reveal protocol of the FTSO, as well as a
novel feature of the FTSOv2 that enables updates in every block. Thus, the FTSOv2
supports two types of feeds: anchor feeds updating every 90 seconds, and block-latency
feeds determined by updates in intermediary blocks. Both types can scale to 1000 data
feeds. Additionally, it consumes less than 10% of the available throughput of the Flare
Network.

1 Introduction

The Flare Time Series Oracle (FTSO) is a system for reaching periodic consensus on spe-
cific time series on the Flare blockchain. It is powered by 100 data providers, who submit
their individual data estimates. Their submissions are weighted by token delegation and the
consensus values are calculated using a weighted median algorithm. In this way, the FTSO
provides consensus-supported on-chain access to various data feeds; in its present form it up-
dates 18 feeds every 3 minutes, which are stored on-chain and directly accessible to DApps.
The current FTSO [6], termed FTSOv1, is implemented mainly with smart contracts. The
FTSOv2 is an improved design, offering two key features: scaling of data feeds, whereby hun-
dreds of feeds are available, and block-latency feeds, where value estimates are published more
frequently. This is achieved by moving almost all computation off-chain, whilst retaining the
whitelist and decentralisation of the previous version.

1.1 Requirements

Decentralization. As with the FTSOv1, this new version is required to be both secure
and decentralized. This is achieved by incentivizing data providers to submit accurate data
estimates, as in the FTSOv1l. At the same time, no single provider should gain too much
control over the data feeds. Through a mix of capping and weight management, the FTSOv2
rewarding process handles the balance between incentivization and decentralization.

Gas Fees. The storage of value estimates sent by about 100 data providers in the FTSOv1
bears significant cost that currently fills around 30% of available sustainable gas bandwidth
with only 18 data feeds. Since the cost of data storage is very expensive, a scalable redesign

of the system is required to minimise gas usage. Also, when possible, calculations and data
storage should be outsourced off-chain to data providers, with agreement on the calculation
results taking place on-chain; this reduces gas consumption of the computations themselves.
To this end, the FTSOv2 substantially reduces the amount of information per-feed required
to be stored on chain and allows the providers to perform necessary computations such as
median values locally, with only the necessary verifiability information uploaded to the chain.

Latency. By applying the above optimizations, the FTSOv2 allows each of the 100 providers
to provide estimates for 1000 data feeds every 90 seconds. Whilst already a substantial
improvement, the FTSOv2 supports an additional feature known as block-latency feeds that
allows for valuations at an even higher frequency. The new feature publishes a value delta
every block, so that the per-block value, is determined and published by tracking these deltas.

1.2 Document Structure

Section 2 introduces the core design features of the FTSOv2 that enable superior scaling to the
vl iteration. Section 3 explains the novel features that facilitate per-block value estimates.
Additional technical details required to understand the block-latency feeds are left to the
Appendix.

2 Scaling Feature: Anchor Feeds

2.1 Phases

The FTSOv2 protocol takes place in a sequence of voting rounds, with each iteration lasting
one round, so that each data feed is updated once per round. This produces a sequence of
values known as the anchor-feed. Each voting round begins at the start of a new voting epoch,
determining the value of each anchor feed for that 90 second epoch. The value of each feed
is determined by aggregating value submissions from each participating data provider into a
weighted median value. Each round takes place across two woting epochs, with rounds and
epochs identified by round ids and epoch ids respectively, with enumeration aligned so that
round ¢ begins at the same time as epoch ¢. That is, in each voting epoch a new voting round
begins, however, the duration of the voting round is longer than the epoch, so that more than
one voting round may be proceeding at a time.

More specifically, each round of the FTSOv2 protocol proceeds in four phases: the commit
phase, in which the data providers commit to their data vectors for the round, the reveal
phase, where the data providers reveal the values underlying their respective commits, the
sign phase, when providers collate data estimates to produce the median data values, and a
finalization phase, ending the round when a provider collects sufficiently many signatures of
the median values for the data estimates to be finalized. The phases of the FTSOv2 protocol,
and the distinctions between voting rounds and epochs, are depicted in Figure 1.

2.1.1 Commit Phase

The commit phase begins the voting round and lasts the entire 90 second duration of the
voting epoch ¢. In this phase, each data provider computes their individual estimate for each
data feed and encodes it into a 4-byte vector using offset binary encoding, then publishes a
hash commitment to the combination data of these vectors. The commitment is calculated as

Commit Hash = Hash(address, i, rand, data)

téO t=90 t=180

‘ Voting Epoch i Voting Epoch i+1
N ; A
- g A
| Voting Round i | :
1 A 3
4 N
Commit_i Reveal_i Sign_i | Finalize_i
90s 45s 10s 10s
Commit_i+1
90s

Figure 1: The phases of the FTSOv2 protocol.

where rand is a locally generated random number and address the data provider’s address.
This random number serves two purposes: it blinds the commit hash of the user from a
search attack, and is used later (once revealed) to contribute to on-chain randomness. Each
provider’s Commit Hash is uploaded to the chain in a commit transaction, which is valid as
long as its block timestamp correctly matches up with the voting epoch i.

2.1.2 Reveal Phase

Beginning immediately after the commit phase, the reveal phase lasts 45 seconds and requires
each provider to reveal their individual estimates committed to in the previous phase. To do so,
they each complete a reveal transaction, revealing all inputs to their hash commitment. That
is, each provider reveals its estimates data and its random number rand. A reveal transaction
is valid as long as the hash of the revealed data matches up with the hash commitment of the
provider; validity of the reveal transaction can be confirmed off-chain, and also requires that
the block timestamp of the transaction lies within the Reveal Phase. Note that providers do
not need to explicitly publish their respective addresses as these are publicly available.

2.1.3 Sign Phase

The sign phase begins as soon as the reveal phase finishes, and has an initial duration of 10
seconds. During this phase, data providers collate submissions from the commit and reveal
phases, filter out invalid submissions, and compute the weighted median values and rewards
(see Sections 2.2 and 2.3) for each anchor feed. Each provider then packages together the
valid submissions and results of their computation into a Merkle tree, and publishes a sign
transaction consisting of the Merkle root and a signature of the root. Once again, note that
the relevant computations are performed off-chain, with only the results themselves being
committed on-chain.

2.1.4 Finalization Phase

The finalization phase begins at the end of the signing phase, and has an initial duration
of 10 seconds. For this phase, a random selection of providers are chosen to participate,
selected sequentially and independently with probability equivalent to their relative weight
until more than 5% of the total weight of providers has been selected. Thus, the number of
chosen providers varies, with enough providers chosen each round so that at least 5% of the
total weight of providers are able to finalize. The results of this sampling are available in
advance, so that providers know whether they have been selected for finalization before the
phase begins.

Using the available signatures from the signing phase, each of the selected data providers
can end the round by collating enough signatures for the same Merkle root and submitting
them to the relay contract, which verifies that the signatures are valid and that a sufficient
voting weight of signatures (at least 50%) have been submitted. Assuming these checks pass,
the Merkle root is published on the voting contract for the round, and thus the data feeds
become available for other smart contracts. If none of the selected providers have completed
the finalization phase after 10 seconds, it is opened to all data providers and concluded once
any provider has submitted a finalization.

Overlapping Phases. In practice, there is some overlap between the signing and finaliza-
tion phases: the finalization process may be completed as soon as enough valid signatures are
available for the voting round. In this case, signatures deposited during the signing phase
but after finalization is completed are still rewarded as normal. Conversely, assuming final-
ization is not completed early, signatures deposited after the signing phase ends but before
finalization is completed are considered valid and rewarded as usual.

2.2 Weighting

The FTSOv2 protocol is a stake-based protocol, in the sense that the contribution to data feed
values and other procedures by each provider is not equal. Rather, each provider’s contribution
to the protocol is proportional to its weight. Weight can be acquired in two ways: firstly,
provider stake, the proportion of FLR tokens owned by the provider itself. Secondly, providers
gain weight according to FLR tokens delegated to their address by other entities, who in turn
receive a share of provider rewards for their delegation. Different phases of the FTSO process
use different definitions of weight, as described below. Note that providers charge a small fee
to their delegators, which manifests as them retaining a proportion of the reward allocated
to the delegations (see Section 2.3). The size of this fee is set by the providers themselves.

FTSO Calculation Weight. The median calculation for the FTSO uses only the delega-
tion weight of the provider, the amount of wrapped Flare (WFLR) tokens delegated to the
provider for participating in the FTSO protocol. If staking weight were taken into account,
stake within the system held by providers inactive in the protocol would dilute the impact of
WEFLR delegation to active providers, potentially compromising the accuracy of the FTSO
outputs.

Thus, for provider ¢ with weight Wp, of delegated tokens, the normalized FTSO calculation
weight W; ¢ of the provider is equal to

W,

K3

Zi WDi .

This is the weight used for both the FTSO computation itself as well as the rewards on offer
for successful FTSO participation.

Wic =

Signing Weight. The signing and finalization phases use the combination of both staked
weight and delegated weight. Thus, the normalized signing weight W; ¢ of the ith provider
can be calculated as
Ws, + Wp,
Wis = Ws. + Wn,) W)

tot
where Wg, denotes the stake and Wp, the delegated stake of provider 7, with Wy, the total
weight of the system, Wiy = > ;(Ws, + Wp,). In practice, all normalization is implicit;
weights are used directly and parsed as percentages.

2.2.1 Capping

In order to ensure that the system remains sufficiently decentralized, caps are enforced on
the maximum weight that an individual provider can have in any given phase of the overall
protocol. As the distinct phases of the FTSOv2 protocol have slightly different security
requirements, the capping measures vary across the phases, as discussed below.

FTSO Data Feed Capping. The goal of capping the individual provider contribution to
the FTSO data feeds is to ensure that no individual entity has too much of an input to the
median computation, which would damage the core property of decentralization. However,
too aggressive a cap would distribute the feed values across too many low weight parties, who
have little investment in the system, which in turn may enable Sybil attacks or damage the
accuracy of the estimates.

The chosen cap is 2.5% of the weight in the system. If the weight of any providers in
a round exceeds 2.5% of the total, then that provider’s weight is considered to be exactly
2.5% in that round. Since normalization is implicit, if this cap is active (e.g. some providers
have too much weight) then the removed weight W, is essentially redistributed across all
providers proportionally to their existing, post-capped stake, e.g. the weight W; ¢ of provider
1 is updated to:

100 + W,

Wic™ =W, c- 100

)

so that in practice the capped providers have weight a little over the initial 2.5% cap.

Signing Weight. For signing weight, a more complicated two-step process is applied. As in
the previous stage, the goal is to trade off decentralization against the possibility of disruption
from many low-weight addresses.

First, the same capping process as described in the previous paragraph is applied to the
signing weight, so that each provider has a capped weight W; g*. Then, a process known as
diversity weighting is applied, rescaling each provider’s weight proportionally to its value to
the power of 3/4. The purpose of diversity weighing is to further increase the decentralization
by reducing the weight of larger providers. This relative increase in the power of low-weight
providers is intended to decrease the number of low-weight providers required to end a signing
phase, so that high-weight providers cannot halt progress by withholding signatures. Func-
tionally, the signing weight W; g, of provider i is set to:

Wi,5*3/4

Wi sign =
gn
’ Ws,tot

where Wj 1o+ denotes the total post-weighted signing weight, W tor = Zi(VVi,S*):"/ 4

2.3 Rewarding

Rewards for participating in the anchor-feeds of the FTSOv2 may come from one of two
sources: Flare’s inflation and community funded pools. The aim of these rewards is to in-
centivize the FTSO outputs to be both accurate and prompt. To this end, rewards are split
across accurate individual estimations, correct signing, and prompt finalizing. The first of
these rewards handles accuracy, with the other two primarily focused on efficiency. Addi-
tionally, providers must be punished for deviating from the protocol, as well as rewarded for
correct participation.

Selecting a Rewarded Feed. Each round, rewards are determined according to perfor-
mance in a single randomly selected data feed, rather than an aggregation of performance
across all anchor feeds. The choice of data feed is sampled uniformly at random amongst ex-
isting data feeds, and crucially is not known in advance. That is, the random seed determining
which feed is to be rewarded in a given round is generated as part of the process generating
randomness (see Section 2.4) in that round. This prevents providers from only focusing on
the feed that is to be rewarded in a round; in order to maximize expected rewards, providers
should submit an accurate estimate for each feed.

This applies both to assigning FTSO accuracy rewards and to determining eligibility
for signing and finalization rewards: only one, randomly selected, feed is used. Since the
rewarded feed is determined uniformly, providers expected returns are unchanged regardless
of potentially varying accuracy across supported fees. However, there is a computational
benefit, as the amount of work required to determine rewarding is lowered to only that needed
for one feed per round.

2.3.1 FTSO Accuracy Rewards

The majority (around 80%) of available rewards are allocated for performance in the median
computation of the FTSO round; these rewards are denoted by Rprso. They are assigned
to incentivise submitting accurate value estimates close to the median value. FTSO accu-
racy rewards are allocated according to two criteria: rewards for submitting a value within
the weighted interquartile range (called the primary reward band) of submitted values, and
rewards for submitting a value within a percentage interval around the weighted median
value (referred to as the secondary reward band), whose width is a parameter determined by
governanace. In the case where a submission lies exactly on the border of the interquartile
range (IQR), its eligibility, or lack thereof, for primary band rewards is determined randomly.
Providers can be eligible for both rewards for the same submission; in practice, submissions
close to the median will often lie within the IQR as well.

More precisely, let Rigr denote the rewards available for submissions within the primary
band and Rpcr for those in the secondary, satisfying Rrprso = Rigr + Rpor. Let Xigr
and Y. por denote the total (post capping) weight of providers whose submissions lie in the
primary and secondary band respectively. Then, an individual provider ¢ with weight W; ¢*
whose submission lies within the primary band gets reward R IQRi defined as

Wic™

Rigr' = w— - Rigr
XIQR

and similarly reward R por' for submissions within the secondary

. Wic®
Rper' = = 70 -Rper,
PCT

with these rewards split amongst the provider and its delegators proportionally to their con-
tribution to the provider’s weight. In the very rare case that the secondary band is empty,
which is a theoretical possibility, secondary band rewards for the round are burnt.

2.3.2 Signing Rewards

Signing rewards, Rign, make up around 10% of the rewards for the round, and are allocated
according to the weight of providers who submit valid signatures for the correct Merkle root
in the sign phase or before finalization. These rewards are provided to encourage prompt and
correct participation in the signing phase. However, in order to be eligible for signing rewards,
a provider must have received accuracy rewards in the given round for the selected feed; this is
to prevent providers participating only to receive signing rewards and not submitting diligent
feed values.

Let X4, denote the total weight of providers who correctly signed the agreed upon Merkle
root in the sign phase or before finalization. Then, an eligible provider with weight W; s, who
delivered a correct signature receives the reward Rs,'gni corresponding to their contribution to
the total weight,

R i Wi,sign R
sign — » © Llsign -
sign

2.3.3 Finalization Rewards

The finalization rewards Rp, make up around 10% of the total rewards, and are distributed
among the selected providers equally. That is, in a round where the number of providers
selected to finalize is Ngy, each of these providers that submits a valid finalization in the
allotted time period receives the same finalization reward Rﬁni equal to:

If none of the selected providers submit a valid batch of signatures of a correct Merkle root
to the relay contract in the allotted time, then all rewards are instead allocated to the first
other provider to do so. These rewards are provided to encourage prompt finalization of the
FTSO data feed values.

As with signing rewards, providers are only eligible to receive finalization rewards if they
have also received an accuracy reward in the same round. Note that this does not effect the
amount of rewards assigned to each eligible provider: if Ng, providers are initially selected
to finalize, each of those who received accuracy rewards and successfully finalizes receives
Rgn

fin
received the necessary accuracy rewards to be eligible for finalization rewards. Corresponding
rewards that would have been assigned to selected providers who did not first receive accuracy
rewards are burnt.

a reward regardless of how many of those providers were both selected to finalize and

2.4 Additional Features

Gas Consumption. Each byte of published data used in the protocol costs 16 units of gas.
The 3 transactions submitted by a provider in the protocol require:

e Commit: 32 bytes consisting of a single hash.

e Reveal: 4032 bytes, consisting of a 4 byte encoding per feed (with 1000 feeds) and one
32-byte random number.

e Sign: 65 bytes, consisting of a 33 byte compressed ECDSA signature and a 32 byte
Merkle root.

Including the flat 21000 gas fee per transaction (incurred once in each of the three phases), the
cost per-provider is 129064 units of gas. Since there are 100 data providers, the total cost for
a round is around 12.9M gas per voting round. This totals around 8.4% of the sustainable gas
throughput of the chain itself. Finalizing and publishing the Merkle root (and corresponding
values) on-chain costs another 0.5% of available gas, keeping the whole process sustainable at
around 9%.

In practice, the gas consumption of the FTSO is implicitly slightly higher, as some of the
required computation piggybacks off of that done by the Flare System Protocol, the protocol
underlying certain functionalities crucial to the Flare network. Parts of the system protocol
that are necessary for the FTSO include computing and paying out rewards, and computing
the weights of the providers. The costs computed in this section do not take into account
costs of the Flare system protocol, as they are a necessary part of the Flare network that are
incurred every 3.5 days. Although they consume a lot of gas, system protocol computation
results are used across the Flare network and not just for the FTSO, so the concrete costs are
not considered towards FTSO throughput requirements.

Randomness. The Flare network requires access to on-chain randomness for a variety of
cryptographic features, including selecting random providers for the finalization phase and
facilitating sortition for the block-latency feeds introduced later. This is supported by the
FTSOv2, with a new random number generated each epoch. Specifically, the random numbers
revealed by each party in the reveal phase are combined into an aggregate random number
for the epoch. To do so, each of the provider-generated random numbers rand; are added
together to make a combined random number

rand = Z rand; mod N

)

where N = 2™ denotes the maximum possible size of the individual n-bit random numbers.
As long as all individual randomness contributions are added, and at least one rand; was
random, the resulting output rand is a random number. In order to track whether or not any
random contributions have been omitted in an attempt to degrade the quality of a random
number (for example by a provider failing to complete the reveal phase), the Merkle root
contains a Boolean value storing this information. In this way, whether or not a provider may
have deviated from the protocol to try to manipulate the randomness is stored along with the
random number.

Penalization The discussion of the commit and reveal phases in Section 2.1 assumed that
each provider correctly reveals the data underlying their commit. That is, proper functioning
of the FTSO process requires that the data revealed in the reveal phase by each provider
correctly hashes to their commitment published in the commit phase. However, this may not
always be the case; either for malicious reasons, such as a provider backing out of their com-
mitment, or just due to an honest error. Regardless of the root cause, this is disincentivized
by a slashing a chunk of the rewards earned by the offending provider.

Additionally, it was assumed in the signing and finalization phases that only one root
receives enough signatures to be finalized, implicitly requiring that each signer does not sign
multiple messages. For example, an opportunistic provider may attempt to gain signing
rewards without expending proper effort: whenever another provider signs a message, simply
sign the same message, and collect the rewards for whichever signature they gave that was

correct, and ignore the failed ones. To prevent this, a penalization is applied for each signature
beyond the first given by a provider in a round.

Each mismatched reveal or excess signature is punished in the same way: by burning a
lump sum of provider rewards. The size of the sum is determined by a combination of a
parameter Rpe,, the weight of the provider, and the total available accuracy rewards for the
round. More formally, a provider with (normalized) calculation weight W; ¢ who requires
penalization in a voting round with accuracy rewards Rprso is penalized by subtracting an
amount

Rpeni = Rpen : (Wi,C : RFTSO)

of their rewards for the round for each penalization accrued.

Burning. As well as rewarding the publication of signatures during the signing phase, the
system punishes providers for failing to participate in this phase in a timely manner. If the
signing process has not received enough weight of signatures before a certain number of blocks,
DB gy, has passed in the signing phase, then the burning process begins. For those providers
who have not yet published a correct signature, a proportion of delegation fees are burnt in
each subsequent block. Since provider fees are only obtained by providers who are rewarded
for accurate data submissions in a given round, this burning procedure only affects successful
providers who delay providing a signature. The proportion of fees burnt is quadratic in the
number of blocks passed since DBy, until a maximum block count DB, is reached, at
which point all fees have been burnt. Formally, the proportion Py, of burnt fees by a
provider publishing a signature in block DB, > DBy, is defined Py, = min(Burn, 1),
where

2
Burn — (DBpub - DBsign) .
DBmax - DBsign

The parameters of the burning system DBy, and DB, are set by governance, balancing
the need for promptness with tolerance for provider outages or other latency issues.

3 Block-Latency Feeds

The FTSOv2 anchor feeds enable 100 data providers to submit data estimates in a commit and
reveal scheme that enables secure feed values to be determined every 90s, which is now further
supported by new block-latency feeds. These feeds enable data updates to be computed every
block by publishing frequent incremental small value changes (updates) over time, rather than
computing the values from scratch.

This new process relies on selecting random samples of data providers to submit incre-
mental updates from the last stream value. Each chosen provider submits an update as a
unit delta, stating whether the value should go up, down, or remain constant. This is then
converted to a numeric delta, representing the percentage change of the value of a feed caused
by a single unit delta. The size of the random sample, as well as the size of the numeric delta
are two system parameters which enable the system to reflect desired data volatility whilst
retaining appropriate levels of security.

3.1 Overview

Update Transactions. Updates to the data stream are given incrementally in a cadence
of one or several for each block, with increments provided by data providers who are chosen

by random sampling. Each data provider submits a transaction that proves their eligibility,
determined through cryptographic sortition (introduced by Algorand [3]), and gives a unit
value change, termed a unit delta, for each data feed in the FTSO.

Applied to the FTSO, cryptographic sortition is a process for selecting random providers
to take part in rounds of the update protocol. Each block corresponds to a round of sortition,
and the ¢th provider is selected to participate or not with probability proportional to its
(signing) weight W; g. This selection is independent of that of the other providers, so that
sortition does not pick a fixed number of users per round. Rather each user is in or out each
round with a fixed probability, and does not know the status of other users until they reveal it
themselves. Providers are able to cryptographically demonstrate that they have been selected
to participate, and cannot cheat the process. More technical details can be found in Appendix
A.

The unit delta for each data feed, taken from the transaction, is converted to a numerical
delta that represents a concrete value difference. These differences yield a data stream for
each feed, which is stored on-chain without history.

Incentives. Incentives to push updates to the block-latency feeds are offered for two pur-
poses: to improve the accuracy of the stream values relative to the anchor feed, and to drive
volatility through increased granularity and greater value variation. Incentives are offered to
reward activity and maintain the security of the system. One type of incentive is for accuracy
relative to the FTSO values, in which the value of the block-latency feed at the time of FTSO
publication is compared to the regular FTSO reward bands. This links the stream values to
the anchor values, and prevents a competing data valuation from forming, as providers are
rewarded for keeping the feed close to the true value represented by the FTSO data.

A second type of incentive is for volatility, the speed at which the feed value fluctuates.
For this incentive, third parties offer monetary incentives that increase either the number of
eligible data providers chosen by sortition, the size of the numeric deltas, or both, as well
as encouraging the participation of these data providers. Increasing the number of providers
setting deltas or the size of the deltas themselves naturally increases the speed at which the
value can change. This pool is simply distributed uniformly for participation in order to
prevent manipulation, without regard for the actual behavior of the data stream.

3.2 Choosing Providers for Feed Updates

In each block, eligible providers have the opportunity to submit an update transaction. A
transaction contains the data for an incremental update to each data feed (including updates
of 0 for feeds that a provider does not cover), together with metadata proving the provider’s
eligibility to submit such a transaction in this block. Specifically, an update transaction is a
contract call with the following data in Solidity syntax:

struct FastUpdates {
uint sortitionBlock;
SortitionCredential sortitionCredential;
Deltas deltas;

}

The custom types SortitionCredential and Deltas are discussed in Appendix A.3 and
Section 3.3, respectively.

Transaction Submission. Each block corresponds to a round of sampling providers by
sortition. As soon as the block appears, each provider has the necessary information to deter-

10

ministically compute their credential for this round of sortition. Those whose credentials are
acceptable are eligible to submit a single transaction with FastUpdates data, simultaneously
proving their eligibility and declaring updates to each data feed.

The choice of eligible providers is pseudo-random and unpredictable. The amount of
providers in a block is variable; it follows a binomial distribution as shown in equation (4),
with mean value e that is a parameter which can be set by governance or by offering incentives.

Submission Window. It is not feasible to require that eligible providers submit their
transaction in the same block as the round of sortition in which they are chosen, or even in
the one afterwards. Therefore, each round of sortition provides credentials that are active for
several blocks afterwards, the number of which is referred to as the submission window and
denoted s. Thus, a round of sortition corresponding to block k entitles the eligible providers
to submit a transaction in any of blocks k,k+1,...,k+ s — 1. The sortitionBlock field
of FastUpdates is the block number beginning the round of sortition that the transaction
sender wishes to authenticate against.

3.3 Encoding of updates

An update for a single block-latency feed is a delta value, including 0, encoded using the
standard two’s complement format for a signed integer with a fixed number of bits. The
entire set of updates is provided as a packed array of signed-integer deltas, ordered according
to a predetermined standard for ordering data feeds. Deltas are only allowed to have one
magnitude, in either direction, or be zero, and the three possible deltas are encoded as

00—0 01 —» +1 11 — -1 10 — unused

If larger value variations in a single block are desirable, the volatility incentive provides a
mechanism to increase the value of e, the expected number of contributing providers, so as to
make this possible.

Numeric Deltas. Each data feed has a configurable numeric delta increment, so that +1
in a unit delta increment corresponds to an actual value update by that numeric delta. For
simplicity the feeds’ numeric deltas are all determined by a single parameter, the precision
p, and are dynamic: when a feed has current value P, a unit delta increment ¢ updates the
value to AP, defined as:

AP = (1+p)°P.

The precision can be tuned via the volatility incentive, with a base value chosen by governance,
and is represented as a fixed-point number in the interval (0,1) with a fractional part of 15
bits. As a result, there is a hard minimum value of 271° = 1/32768.

Data Streams. Updates to the block-latency feeds generate a stream of values for each
feed, where the value as of block n is the value as of block n — 1 plus the overall delta in
block n, defined as the application of each numeric delta increment of that block. This value
is stored on chain and is maintained at each update transaction, so that the live value can be
used in smart contracts.

3.4 Economic Incentives

The FTSO offers rewards to encourage honest participation, and the same is true for updating
the block-latency feeds. Additionally, the protocol has a separate incentive towards the specific

11

goal of reflecting volatility. Providers are rewarded for their updates if the block-latency data
stream is sufficiently close to the next anchor feed value. Individuals are allowed to buy
temporary increases in the precision and sample size (subject to controls described below),
distributed as rewards to providers of updates to the block-latency feeds during the period of
increase, to encourage greater responsiveness to volatility.

Total Reward and Distribution. The rest of this section describes several sources of
reward for update providers, namely, from participation (denoted R,), from accuracy (denoted
R,), and from volatility-related offers (denoted R,). These funds are determined at different
intervals as follows:

e IR, is set at the start of each reward epoch, a period of several voting epochs in which
reward levels are fixed; between reward epochs, reward sizes may be modified.

e R, is calculated at the end of each voting epoch.
e R, varies block-by-block.

Combining these rewards, it follows that during each block the total reward R; satisfies
Rt — Rp/bre +Ra/bpe +Rv> (1)

where b, is the number of blocks in the reward epoch and b, is the number of blocks in the
voting epoch. All of these components of rewards are inflationary and allocated specifically
for use by the block-latency update protocol.

Proportional Distribution. Each update in a block is assigned an equal share of the total
reward for the block, allocated to the provider of that update. Equivalently, the participation
reward is allocated in proportion to the number of updates to the block-latency feeds made by
a provider during the reward epoch, the accuracy reward in proportion to those made during
the voting epoch, and the volatility reward in proportion to the number of updates in each
block.

Weighted Uniform Distribution. Providers are chosen by cryptographic sortition, with
probability proportional to their weight. Thus, their average number of transactions over
time is an accurate proxy for their weight. Therefore, over a large period of time, uniform
distribution of rewards to block-latency update transactions should perform equivalently to
rewarding participating providers according to their weight.

Cost of Distribution. The amount that each block-latency update provider may claim is
included in the Merkle tree that contains both FTSO values and rewards for FTSO providers,
and so incurs no additional computational cost on-chain.

3.4.1 Reward for Participation

The participation reward R, of Equation (1) is a lump sum taken from reward offers for
the FTSO (including inflationary and community offers), irrespective of the content of the
updates. It may be seen as a start-up fund to encourage providers to build low latency update-
capable infrastructure, and once participation reaches a sufficient level may be decreased or
eliminated by governance so that incentives are performance-based.

12

3.4.2 Reward for Accuracy

The role of the accuracy reward R, of Equation (1) is to maintain agreement between the
block-latency and anchor feeds of the FT'SO. These rewards are based on the FTSO reward
system that defines several reward bands around the median value in each epoch, which
encourage providers to predict the median value closely. The proposed accuracy rewards
simply adjust the incentive as required so that providers are rewarded for the block-latency
feeds matching the anchor values.

The FTSO Reward Bands. Recall that the FTSO defines two reward bands for anchor
feeds:

e The primary reward band, centered on the median value and precisely wide enough to
contain the value predictions of 50% of the total weight of providers.

e The secondary reward band, centered on the median value and having a fixed percentage
width.

FTSO providers are rewarded based on whether their individual predictions fall within these
bands. The block-latency feeds offer additional rewards from these bands. These rewards,
as for the FTSO, are funded from inflation and calculated off-chain, but independently of
the FTSO rewards. The width of the secondary band and the proportion of total rewards
allocated to each band are configurable for the block-latency feed protocol separately from
the FTSO.

The Reward Bands for Block-Latency Feeds. To determine rewarding, the block-
latency is considered to be a provider whose commit in voting epoch i is evaluated for the
reward bands at the end of that epoch alongside the submission of the regular providers. In
this role, the accuracy reward R, is set as though the block-latency feed as a whole were
a provider that had made a commit for the value of the data stream at the end of voting
epoch i. This includes the random choice of data feed: accuracy rewards in a given round are
determined relative to the implied commit of the block-latency feed for the data feed chosen
for FTSO anchor rewards in that round. Note that this use of the stream as a provider is
just for allocating rewards, and not while setting the width of the reward bands themselves.
For the reward calculation, the block-latency feed is awarded a proportion of the inflationary
rewards for the round, with the proportion assigned to anchor and block-latency feeds being
a parameter configurable by governance.

Reward Bands as Incentives for Accuracy. The above band-based rewards, which are
distributed among update providers based on the proximity of the block-latency feed’s value
to the FTSO median value, encourage delta updates to move the feed towards the FTSO
anchor value as each voting epoch progresses. This promotes agreement between the two
values, preventing them from forming independent feeds. Conversely, FTSO providers are
not rewarded or penalized at all for disagreement, which encourages them to predict the
true value regardless of the block-latency trend; if the disparity is sufficiently large, then no
accuracy rewards are given to block-latency update providers until the data streams return to
agreement. This allows the anchor and block-latency feeds to support each other as sources
of truth, each decided by complementary consensus processes.

13

3.4.3 Incentive for Volatility

Volatility is the confluence of two conditions: a large range of changes in value and high
frequency of such variations. The range of variation r quantifies the degree of volatility
that may be reflected by block-latency feed updates at the most frequent possible cadence.
Specifically, it is defined to be r = pe, where p is the precision of individual updates and e is
the expected number of providers giving updates per-block, corresponding to the mean of a
binomial distribution.

Individuals such as DApps or other customers of the data stream may seek to fund a
particular degree of volatility by setting r, which is translated to functional changes in p and
e. The pricing of this is such that the cost of increasing e is exponential in the current value
of e, with the goal of making it very expensive to increase the number of update transactions
per block past a level that is deemed, by governance, to be the maximum tolerable amount
of throughput to be occupied by the block-latency feeds.

Active Duration of Volatility Incentives. Incentive offers (described below) are made
with the transfer of a corresponding monetary value m. Each offer has a duration of effect
T, a parameter controlled by governance that determines the number of blocks for which it is
valid for and after which the offer expires. In each of the blocks within the duration of effect,
the total reward R, is increased by m/T,, which according to the strategy described above is
allocated uniformly to updates in that block.

Format of an Incentive Offer. An incentive offer is a transaction with an associated
value transfer (representing m) and calldata of the form:

struct IncentiveOffer {
ufixed8x8 rangelncrease;
ufixed8x8 rangelimit;

}

which specifies a particular amount of increase in the range of variation in terms of the (as-yet
unsupported in Solidity) unsigned fixed-point type with 8-bit integer part and 8-bit fractional
part.

The range increase must be non-negative to prevent malicious reversion of incentives;
the range decreases correspondingly at the end of the duration of effect. The required field
rangelimit is a limiting value that allows multiple independent offers to be made blindly
without overshooting the range that any of them actually desires.

Rationale. This format for an incentive offer has the appealing feature that a party inter-
ested in representing a certain amount of volatility via the data stream may do so by directly
stating that desire. By contrast, an alternative solution that would support altering both p
and e would suffer from the fact that they have a more abstract meaning, including a many-
to-one relationship with r, and a subtle interaction whose importance is not necessarily easy
to understand.

Incentive Contribution Equation. The meaning of an incentive offer is expressed through
three quantities: the total contribution ¢, the variation range r, and the expected sample size
e; the precision p is implicitly involved through the relation r = pe. The contribution c is
expressed as a function of and e in the form:

¢ = Ar + exp(e/B), (2)

14

where A and B are parameters to be specified. The meaning of ¢ is the total amount of
contributions through active incentive offers that have brought r and e to their present values.
A represents the cost of increasing the value of r by 1, which is configurable by governance.
The setting of B determines the maximum increase in e permitted by a single incentive offer;
this cannot be too high, as a larger e represents a larger proportion of each block being used
for block-latency updates. This equation and its relation to incentive offers is fully analyzed
in Appendix B.

Strategy for the Volatility Award. The effect of larger values of e, representing more
providers contributing in each block, on the choice of updates is subtle. Since no direct
information naturally passes between the providers who make those updates during the same
block, each provider knows only the expected number e, as well as their personal estimate of
the value var of the total variation of the data over the duration of one block. Therefore the
ideal strategy is for each provider to decide on the sign of the variation (i.e. whether the value
goes up or down) and then with probability min(1, var/e) submit an update with a unit delta
of that sign or else of zero.

When var is accurate, less than e, and common knowledge among all providers, this
strategy results in an expected total block variation of var. Even if var > e (the ratio exceeds
1), the actual sample may be large enough to reach var if everyone follows the same strategy.

Consensus. The volatility reward itself is a general incentive to participate, especially in
response to increased e. In times of genuine volatility, participating honest providers will
have the same information about the direction of movement and will make matching updates;
in times without volatility, their updates will have no direction. In the former case, the
magnitude of the total update in each block will be approximately e while in the latter case,
it will be approximately 0 (barring intentionally malicious updates in both cases).

Sortition as rate-limiting. In each round of sortition, the sample size e is the expected
number of update transactions that may occur in a single block. This has the effect of throt-
tling updates, which prevents blocks from being monopolized by block-latency feed updates
and also slows the rate of updates to the point that successive ones have an opportunity to
react to each other, which is desirable for the representation of steady long-term trends. By
contrast, multiple updates in the same block must, even in principle, be made blind to each
other. This is the domain in which the incentive system encourages volatility.

References

[1] S. Micali, M. Rabin, and S. Vadhan. “Verifiable random functions”. In: 40th Annual
Symposium on Foundations of Computer Science (Cat. No.99CB37039). 1999, pp. 120
130. Do1: 10.1109/SFFCS.1999.814584.

[2] Sharon Goldberg et al. NSEC5 from Elliptic Curves: Provably Preventing DNSSEC
Zone Enumeration with Shorter Responses. Cryptology ePrint Archive, Paper 2016,/083.
https://eprint.iacr.org/2016/083. 2016. URL: https://eprint.iacr.org/2016/
083.

[3] Yossi Gilad et al. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. Cryp-
tology ePrint Archive, Paper 2017/454. https://eprint.iacr.org/2017/454. 2017.
URL: https://eprint.iacr.org/2017/454.

15

https://doi.org/10.1109/SFFCS.1999.814584
https://eprint.iacr.org/2016/083
https://eprint.iacr.org/2016/083
https://eprint.iacr.org/2016/083
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454

[4] Keep network. AltBn128.sol. 2020. URL: https://github. com/keep-network/keep-
core/blob/988£0a007c66ce8eafbecec7adbdlcedceel6897/solidity-vl/contracts/
cryptography/AltBn128.so0l.

[5] Team Rocket et al. Scalable and Probabilistic Leaderless BFT Consensus through Metasta-
bility. 2020. arXiv: 1906.08936 [cs.DC].

[6] Flare Network. The Flare network and FLR token. 2022. URL: https://flare.network/
wp-content/uploads/Flare-White-Paper-v2.pdf.

Appendices

A Cryptographic sortition

Cryptographic sortition is a way of deterministically yet unpredictably choosing a small sample
from a large population of participants (for the FTSO, these will be the whitelisted providers),
in such a way that no participant can know which others are sampled until they reveal
themselves with proof.

This discussion makes open references to the FTSO and its functionality, since that is
its application in this proposal. It is not an entirely abstract presentation of cryptographic
sortition.

A.1 Elements of Cryptographic Sortition

The technique is based on verifiable random functions (VRFs [1]) and so incorporates both
the elements of pseudorandom number generation and cryptographic identity. Effectively,
each participant P has a personal pseudorandom function randp that is unusable by others.
The random numbers thus generated are used to select participants who will be allowed to
submit data updates, a process that already has the name sortition. This secure PRNG-based
sortition is therefore cryptographic sortition.

A.1.1 Seed

In each block B there is a seced value seedp that, for each participant P, is the input to
randp. Successive seeds may be computed either deterministically or randomly, and both are
recommended here for security. Seed manipulation is the main avenue for influencing the
outcome of sortition and can have two effects:

1. When new participants join, a brute-force computation may allow their particular iden-
tities to be chosen advantageously (that is, more likely to be sampled) when entered
into sortition using some future seed.

2. When seed succession occurs, a brute-force computation may suggest actions by existing
identities that could influence the new seed advantageously to them (that is, more likely
to include them in a sample).

A.1.2 Score and Proof

Each participant P generates, in each block B, a number scorep p, where

scorep p = randp(seedp).

16

https://github.com/keep-network/keep-core/blob/988f0a007c66ce8eafbecec7adbd1cedcee16897/solidity-v1/contracts/cryptography/AltBn128.sol
https://github.com/keep-network/keep-core/blob/988f0a007c66ce8eafbecec7adbd1cedcee16897/solidity-v1/contracts/cryptography/AltBn128.sol
https://github.com/keep-network/keep-core/blob/988f0a007c66ce8eafbecec7adbd1cedcee16897/solidity-v1/contracts/cryptography/AltBn128.sol
https://arxiv.org/abs/1906.08936
https://flare.network/wp-content/uploads/Flare-White-Paper-v2.pdf
https://flare.network/wp-content/uploads/Flare-White-Paper-v2.pdf

This number cannot be computed by another participant P’ # P by definition of randp, but
it is not yet possible to verify that a given number is truly scoreg p. This is accomplished by
the supplementary value proofp p and a matching verification algorithm. Intuitively, given a
cryptographic signature scheme sigp in which signatures are deterministic, and some choice
of hash function hash, define:

proofp p = sig,(seedp),

scorep p = hash(proofy p).

Then the verification algorithm is signature verification. Since most signature schemes, in
particular elliptic-curve-based ones, are not deterministic, this procedure will fail to give a
unique possibility for the value of scorep p, which renders the score useless. An implementation
of elliptic curve VRFs (]2, §4.1]) is possible and resembles the above, but manages to contain
the nondeterminism just to the proof and not the score. This is the implementation also used
in Algorand.

A.1.3 Selection

With VRFs fully implemented, each participant generates only a single acceptable score per
block. This is used, similarly as in proof of work, in comparison with some threshold value,
there called difficulty but more easily understood as an amenability A, where participant P
is sampled in block B if and only if scoreg p < A. If the score has a range up to N (say,
N = 2256) then the probability of P being sampled is Prp = A/N and, if the pseudorandom-
ness properties of the VRF are adequate, is independently and uniformly distributed among
participants.

Weighted Sampling. Applications may not treat all participants equally: in Algorand,
wealth is an advantage in sortition, and in this document, signing weight is. With each
provider’s weight scaled proportionally to wp p a whole number, P is allowed to generate
wp,p scores using equation (3), below. Each score may accompany a different feed update
transaction, which are selected independently using the amenability criterion above. Effec-
tively, an actual participant P has a presence as wp p virtual participants for selection in
block B.

A.2 Next Seed Choice

The evolution of the seed from block to block is necessary to perform multiple rounds of
sortition. Both pseudorandom and predictable succession are vulnerable to or offer protection
against different exploits, and are suggested in combination.

A.2.1 Pseudorandom Base Seed

The FTSO features a random number for each reward epoch, determined by summing inde-
pendent, arbitrary submissions by providers in their reveal transactions in the previous epoch.
This is entirely unpredictable before the first block of the reward epoch, but is moderately
susceptible to manipulation, since the adversary could wait until they are certain, or likely
to be certain, that all other submissions are known, and then choose whether to reveal their
own in order to influence the final result. This is a withholding attack on the seed.
Fortunately, the FTSO also features a quality predicate for the random value, which reflects
whether any provider’s commit was not followed by a corresponding reveal, and therefore

17

whether withholding occurred. This at least provides visibility into attempts to manipulate
the random value.

In each reward epoch, numbered ng, the base seed base,, is defined to be the random
value for this epoch.

A.2.2 Predictable Seed Succession

During the reward epoch, blocks numbered ng allow seeds

seedp = hash(base,,,,ng), (without weighting)
seedp = hash(base,, ., np, 1), (with weighting), VP(0 <i < wp p) (3)

where the latter form is used in combination with the weighted sampling process described
earlier.

Despite the total predictability of these seeds within a single reward epoch, this is secure
against the withholding attack described for pseudorandom succession. Its vulnerability is
that, since it is predictable, it can be used to craft an advantaged identity to add as a
participant, when that selection happens. This suggests the necessary precaution that the set
of participants remain fixed throughout the reward epoch.

As it happens, there is a natural time to update the whitelist of block-latency feed
providers, the time it is already done in the FTSO: at the start of a new reward epoch,
based on delegations in a block of the previous epoch chosen via the newly active random
value. Therefore, providers’ identities in the whitelist are committed before knowledge of the
base seed that would be manipulated to bias them. This whitelist is valid and unchanging
during exactly one reward epoch, during which time predictable succession is used for new
seeds.

Manipulation. This method is essentially impossible to manipulate, since the factors that
can influence the seed and the selection of identities for the whitelist are outside the adversary’s
direct control. The quality of the random value makes it obvious when a withholding attack
on the base seed occurs, though it does not prevent manipulation, but merely exposes the
decreased trustworthiness of selection by sortition during that reward epoch.

A.3 The SortitionCredential Type
According to the implementation [2], a sortition credential should be expressed as

struct SortitionCredential {
uint256 replicate;
GlPoint gamma;
uint256 c;
uint256 s;

b

where the replicate field corresponds to the value i in equation (3) and G1Point is a type,
defined in the Solidity library A1tBn128.so0l [4], representing a point on an elliptic curve as
a single number x plus a sign sgn(y) to distinguish the branches of the square root, using the
Weierstrass form of the curve:

y? =23 +3 over the field Fp,

p = 21888242871839275222246405745257275088696311157297823662689037894645226208583.
This provider-supplied data is complemented by on-chain information:

18

struct SortitionState {
uint baseSeed;
uint blockNumber;
uint scoreCutoff;

uint weight;
G1Point pubKey;
3

in which the first three fields represent the other data in equation (3) as well as the amenability
(as a cutoff value for the score) A of Appendix A.1.3, and the last two fields represent registered
data for the provider sending the transaction.

A.4 Statistics

The sample size obeys a binomial distribution: with n participants and probability of sampling
p = Prp for each participant P, the probability of k successes is the binomial distribution

B(n,k;p) = (Z)pk(l —p)" " (4)

It is not the hypergeometric distribution, as in Avalanche [5]. Success for each participant
is independent of the others, and the success condition scorep p < A is not the same as the
condition of “having a particular feature of which there are a fixed number in the population”.

The expected number of successes, i.e. the expected sample size, is e = np = (A/N)n with
variance approximately also equal to e. The main concern for the variation of k is that it arises
that k£ = 0, an interruption in the stream of block-latency feed updates. This probability is of
course (1 — p)™, or with large n and p = e/n, simply exp(—e), thus descending exponentially
from exp(—1) ~ 0.37 when the expected sample size is 1.

B Mathematics of the Volatility Incentive

This appendix concerns the mathematical details relating the format of a volatility incentive
offer to Equation (2).
B.1 Differential Form of the Incentive Contribution Equation

Equation (2) governs the effect of an incentive offer through its differential form,

1 1
de = Adr+ Eexp(e/B) de = Adr + E(C_ Ar) de,

or,
de — A dr
de = B—— = B dlog(c — Ar),
¢ c— Ar glc)
which is a differential equation that when solved recovers the previous non-differential one.
An offer supplies the values of dc and dr, respectively the associated contribution and the
specified range increase (the latter possibly capped by the range limit), from which de can be
obtained. The post-offer values of ¢, e, r, and p are respectively

d =c+dc, ¢ =e+de, ' =r+dr, p=—.

19

In addition to the previously stated requirement that dr is nonnegative, de is also re-
quired to be nonnegative, since otherwise one could decrease e for free by simply offering a
contribution of 0. More strictly, it is required that the excess x = ¢ — Ar and its differential
dx = dc — A dr both be nonnegative (and the former actually positive).

B.1.1 Numerical Concerns

In this transition from the differential equation involving infinitesimal dec, dr, and de to the
finitesimal version where those values are specific, probably small numbers, it must be de-
termined whether to use ¢ or ¢, and r or 7/, in the equation for de. As it is, the value of
de is unbounded, and by choosing dr = 0 an attacker may buy any amount of de with a
proportionally priced offer dc. This is at odds with the desired exponential behavior of the
total contribution as a function of e. Therefore, a given incentive offer is applied using the

modified differential form J Ad J
c— r T
= B = B .
de c — Ar’ r+dzx

This fraction is always less than 1, making B the maximum allowed increase in e per incentive
offer.

B.1.2 Pricing of the Range Limit

The range limit in an incentive offer may decrease the true value of dr from the value of
rangeIncrease. As it is, this means that less of the contribution is spent on increasing r
and, therefore, more of it is spent on increasing e, which in the event of multiple independent
offers being made with the same limit means that de ~ 1 may occur repeatedly. To prevent
this, only a portion of the offer is accepted, in the same ratio as the true and given values of
dr, and refund the rest. This means that once the limit is reached, the offer has no effect and
no cost beyond the cost of the transaction itself.

20

	Introduction
	Requirements
	Document Structure

	Scaling Feature: Anchor Feeds
	Phases
	Commit Phase
	Reveal Phase
	Sign Phase
	Finalization Phase

	Weighting
	Capping

	Rewarding
	FTSO Accuracy Rewards
	Signing Rewards
	Finalization Rewards

	Additional Features

	Block-Latency Feeds
	Overview
	Choosing Providers for Feed Updates
	Encoding of updates
	Economic Incentives
	Reward for Participation
	Reward for Accuracy
	Incentive for Volatility

	Cryptographic sortition
	Elements of Cryptographic Sortition
	Seed
	Score and Proof
	Selection

	Next Seed Choice
	Pseudorandom Base Seed
	Predictable Seed Succession

	The SortitionCredential Type
	Statistics

	Mathematics of the Volatility Incentive
	Differential Form of the Incentive Contribution Equation
	Numerical Concerns
	Pricing of the Range Limit

